
TiCodEd 

&

Structured Extended Basic

by Stefan 'SteveB' Bauch

Version 2.20 (C)2022

Ticoded <at> lizardware.de



Table of Content
What is TiCodEd ?..............................................................3
What is Structured Extended Basic?.............................................3
Installing TiCodEd.............................................................4
TiCodEd Projects...............................................................4
Writing SXB Code...............................................................6
Exporting SXB Code.............................................................6
The Charset Editor.............................................................6
Structured Extended Basic......................................................8
Using REPEAT .. UNTIL..........................................................9
Using WHILE .. ENDWHILE........................................................9
Using Labels and Line-Numbers.................................................10
The CASE-Statement............................................................10
Implicit and explicit Code-Blocks.............................................11
Variables.....................................................................11
IN Set Condition..............................................................11
The BIN$ Function.............................................................12
Line Continuation.............................................................12
Editor Features...............................................................12
Automation and Integration....................................................12
Porting existing XB code to SXB...............................................14
Extended Basic Version........................................................14
Extended BASIC Compiler Considerations (ISABELLA/JEWEL).......................14
Limitation....................................................................14
Trouble-Shooting..............................................................15
Found an Error? Having a suggestion? Future plans?............................16
Building TiCodEd from Source..................................................17
Use LibXBTKN32.dll or LibXBTKN64.dll..........................................17
BSD License...................................................................18
Acknowledgements..............................................................18
Appendix A  Change-Log– .......................................................19

Version 2.20...............................................................19
Version 2.10...............................................................19
Version 2.00...............................................................19
Version 1.20...............................................................20
Version 1.10...............................................................20
Version 1.00...............................................................20

Appendix B  Standard Subroutine Library– ......................................21
Appendix C  Extension Packages– ...............................................22

XB256......................................................................22
T40XB......................................................................22
TML  The missing link– .....................................................23
RXB 2022...................................................................23
Extended Basic 2.7.........................................................23

Appendix D  Example files– ....................................................24
Appendix E  Keyboard Emulation– ...............................................26

TiCodEd & Structured Extended Basic Page 2



What is TiCodEd ?
When I discovered the fabulous ISABELLA Extended Basic Compiler I finally found 
a way to complete my TI-99/4a game programs I had abandoned for quite some 
years, because the interpreted basic was so slow.

I was disappointed that working with an emulator still meant using the limited 
edit functions of the TI. I discovered TIdBiT, a PHP program to get rid of the 
line numbers in Extended Basic and replace them with labels. So I started with 
an PC text editor, pasted the text to TIdBiT, converted the program there to 
standard Extended Basic and pasted it to the Classic99 emulator.

Some say, laziness is the mother of all inventions. I wanted to have a simple 
way of writing code in a modern environment and test it in an emulator.

TiCodEd (say it like 'decoded', only with a 't' in the beginning: 'TEE-coded') 
is the TI Code Editor for this. It offers:

• Modern Basic without line numbers

• Translation to Standard Extended Basic

• Saving of files in tokenized format in FIAD

Once you wrote your code, just click Export/Build Project, switch to the 
emulator, OLD DSK1.YourProg and RUN …
Your program is working perfect? TiCodEd can also write the program in MERGE 
format for direct use in the XB Compiler.

What is Structured Extended Basic?
I found TIdBiT quite useful and ported it to Pascal, to be used in the free 
Lazarus IDE. I learned a lot by doing so, but one finding was, that this was not
suitable to be extended for structured elements I wanted to use in my programs:

• REPEAT  UNTIL…

• WHILE  ENDWHILE…

Those two forms of loops, head controlled WHILE and tail controlled REPEAT are 
making GOTO redundant. Labels are supported for all statements where line 
numbers are used in Standard Extended Basic, i.e. GOTO, GOSUB, RESTORE.

You can now write programs like

Data "This is a Test ", Does it work? , "End"
repeat
  read a$
  print a$
until a$="End"
end

TiCodEd translates this to

100 Data "This is a Test ", Does it work? , "End"
110 read a$
120 print a$
130 IF NOT (a$="End") THEN GOTO 110
140 end

which can be run with the regular Extended Basic Module. 

TiCodEd & Structured Extended Basic Page 3

https://atariage.com/forums/topic/224905-xb-game-developers-package/#comments
https://www.lazarus-ide.org/
http://www.harmlesslion.com/software/Classic99
https://tidbit99.com/


Installing TiCodEd
Just download the ZIP file and unpack it to a folder of your choice. As you are 
reading this documentation you figured this out for yourself, didn't you? 

You may associate the SXB extension (Structured Extended Basic) with TiCodEd by 
double-clicking an SXB-File, search for the TiCodEd.exe file and select always 
to use this application.

TiCodEd Projects
When you open an SXB file or create a new one, TiCodEd automatically creates 
project file in the same directory with the extension XBP (Extended Basic 
Project).

The project file contains the options for your project and is maintained on the 
Project page.

Currently the following options are available:

• Which Standard Extended Basic Text file will be written. ('Write on Build'
is always checked as this file is mandatory)

TiCodEd & Structured Extended Basic Page 4



• Which Standard Extended Basic Token file will be written (i.e. to a FIAD 
directory) and this should be written when the 'Build Project' or 
'Tokenize' are selected in the Export menu.

• Which Standard Extended Basic Token MERGE file will be written (i.e. to a 
FIAD directory) and this should be written when the 'Build Project' or 
'Tokenize' are selected in the Export menu. Very useful when you plan to 
compile the program using the XB Compiler.

• If the IV254 format will be forced even for smaller programs (especially 
useful with TML or other libraries using VRAM)

• Start Line Number and Increment when creating the Standard Extended Basic 
program from the Structured Extended Basic program, which usually has no 
line numbers as there are not needed. 
Note: Scattered line numbers in the SXB file may be used to create logical
blocks, see Page 10, Using Labels and Line-Numbers.

• Generated GOSUB- and SUB-Routine Line Numbers (SUBs must be the last 
statements in any XB program).

• Debug: Lines starting with a hash # will be included for debugging when 
box is checked, otherwise they will be commented //. 

• Log-File Verbosity configures how many messages written to the Log page

◦ Error - Only Errors are shown

◦ Warning - Errors and Warnings are shown

◦ Information - Errors, Warnings and Information are shown

◦ Verbose - Also included debug information

◦ Very Verbose - More Debug information

◦ Unbelievable Verbose - Debug down to the bits

Place the mouse over the scale to get a pop-up of the selected level.

• Libraries

◦ Extension Package: Provides simplified CALL routines to popular 
extension packages (see page 22, Appendix C  Extension Packages– )

◦ User Library: Include a text-file with your favorite SUB-Routines to be
automatically appended to your program when used.

◦ Standard Library: Commonly used functions, still under development
(see page 21 Appendix B  Standard Subroutine Library– )

• Post-Processing: A command issued after a successful build-process. The 
following variables will be substituted before execution:

◦ %SXB%  - Filename of the SXB file

◦ %XBT%  - Filename of the Extended BASIC Text file

◦ %XB%   - Filename of the Extended BASIC Token file

◦ %XBM%  - Filename of the Extended BASIC Merge file

◦ %XBP%  - Filename of the Project file

TiCodEd & Structured Extended Basic Page 5



◦ %TIME% - Current time

◦ %DATE% - Current date 

Writing SXB Code
The SXB page is the actual editor with syntax highlighting. SXB Keywords are 
bold black, literals and symbols are simple black, identifier red, strings 
magenta and comments are in petrol.

Use File/Open to load the demo SPEEDY.SXB, a very simple game to demonstrate the
main concepts of SXB. 

For an introduction to Structured Extended Basic see page 8 and the provided 
examples.

Exporting SXB Code
Once you finished you code, or at least reached a state you want to test, you 
can click Export/Build Project or start the steps separately, first 'SXB to XB' 
and then 'Tokenize'. Export/TIdBiT starts the port of TIdBit to create the XB 
file. 

Depending on your project settings a tokenized and/or tokenized MERGE file will 
be written.

If you mount for example DSK4 in Classic99 to your can just type OLD 
DSK4.<program> and RUN it.

You will find the log of the conversion on the Log page and the Standard 
Extended Basic file on the XB page, which is read-only by default, but becomes 
editable double-clicking the text. This might be useful when you want to make a 
small adjustment and then click Export/Tokenize to create the TI files. The case
will be adjusted in the tokenization and remains intact in the XB page.

The Log can be cleared or saved to a file by a left button click on the log text
for the context menu.

Please note that TI Files resulting from the export are binary files with the 
TIFILES header used by most emulators and may get corrupted when opening with a 
text editor, but may be viewed or changed with a Hex-Editor like XVI32. I 
recommend Ti99Dir by Fred Kaal to manipulate TI files. 

The Charset Editor
One common task in game development is the definition of the graphics. The Char 
page offers a powerful tool to help with this. You can choose between 8x8 pixel 
and a 16x16 character definition for single characters or Magnify 3 or 4 groups 
of four characters, or free defined areas of up to 16x8 characters. In order to 
support the design you can choose the fore- and background color and see a small
preview.

TiCodEd & Structured Extended Basic Page 6

http://www.ti99-geek.nl/Projects/ti99dir/ti99dir.html
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
https://www.ninerpedia.org/wiki/TIFILES_format


The resulting definition string will be updated with every click you make and 
can be copied with Ctrl-C to your program. The string is also editable, you can 
change it any time or paste a hex-string. Illegal, non-hexadecimal characters 
will be erased when you change focus to another element and leave the edit 
field, it is even possible to paste a complete CALL CHAR statement. 

On the right side of the screen you see a charset table with three tabs:

1. Extended Basic: 32 to 159 (#CHAR1xxx)

2. XB256: 0 to 255 (#CHAR2xxx)

3. Auxiliary: 0 to 255 (#CHAR3xxx)

The first column is the character number and the printable character when 
available, the second is the preview and the third is the Hex-Definition. You 
may edit or enter valid hex codes directly in this table.

The Size & Grouping  setting allows you to group chars as needed. “ ” Groups can be
selected by clicking on any char within the group. The first line of the group 
is marked in red, the remaining lines in yellow. Inactive groups are indicated 
with a bold character number and the first line of a group has a gray 
background. Regrouping is always possible and does not change any pattern.

By selecting Background Image  you may load a graphic in the transparent “ ”
background as a pattern to copy.

The charset editor is linked to your SXB program in two ways:

1. CALL AUTOCHAR  Use this subroutine in your program to dynamically create –
a subroutine defining all chars (re-)defined in the Extended Basic  and “ ”
XB256  tab, the first by using CALL CHAR, the second by using CALL “ ”
LINK( CHAR2 ,..) when building your project.“ ”

2. You can refer to any char in the three tabs with the literal #CHARnxxx or 
#CHARnxxx:z , for example as CALL CHAR(132,#CHAR3012:4) which will refer 
to chars 12 to 15 from the third tab Auxiliary . “ ”

TiCodEd & Structured Extended Basic Page 7



For sizes 1xN or 2x2N an additional section for animations appears:

You can play the animation while editing to see the result immediately.

Structured Extended Basic
Let's start with a small included demo game called Speedy .„ “

You can see the program structure just by looking at the optional indention. In 
the first lines you see comments. Everything after the // is ignored to the end 
of the line and not included in the exported XB file. REM or ! may be used to 
have persistent comments in XB.

A leading # indicates a Debug-Line. Depending on the checkbox Debug on the 
project page the line gets included (checked) or dismissed (unchecked). This way
you can include additional functions during development and just switch them off
when you build a release version.

Blank lines will be ignored and may be used for grouping of lines.

The program contains labels (in line 19, used in line 5) and structured loops, 
REPEAT .. UNTIL and WHILE .. ENDWHILE, discussed in detail in the next two 
paragraphs. These loops may be nested like FOR..TO..NEXT.

For Structured Extended Basic it is mandatory to have these statements not 
combined with other statements on the same line, as it is common practice for a 
better readability of the source code.  

TiCodEd & Structured Extended Basic Page 8



[for playing Speedy use A key to turn left, L key to turn right, N key for end.]

Using REPEAT .. UNTIL
REPEAT .. UNTIL is a foot-controlled loop. This means, the code is executed at 
least once. The condition at the end of the block determines whether to repeat 
the section starting with REPEAT or leave it.

The loop will be translated in two steps as follows:

REPEAT

  <CODE>

UNTIL <CONDITION>

Step #1: Create Labels

REPEAT001:

<CODE>

IF NOT (CONDITION) THEN  REPEAT001

Step #2: Assign Line-Numbers

100 <CODE>

110 IF NOT (CONDITION) THEN 100

You may use any valid XB code and any valid XB condition. Check the SPEEDY.SXB 
example and compare the SXB with the XB page.

Using WHILE .. ENDWHILE
WHILE .. ENDWHILE is a head-controlled loop. This means, the code may be omitted
completely if the condition is not met. 

The loop will be translated in two steps as follows:

WHILE <CONDITION>

  <CODE>

ENDWHILE 

Step #1: Create Labels

GOTO ENDWHILE001

WHILE001: 

<CODE>

ENDWHILE001:

IF CONDITION THEN WHILE001

Step #2: Assign Line-Numbers

100 GOTO 120

110 <CODE>

120 IF (CONDITION) THEN 110

130 ...

This has been changed since version 1.0. The line 100 is not an 'IF' in order to
safe memory and results in one additional jump when the condition is true.

As many BASIC variants use WHILE .. WEND it is also supported to use WEND 

TiCodEd & Structured Extended Basic Page 9



instead of ENDWHILE.

Using Labels and Line-Numbers
You may use Labels in your program anywhere in your Basic program where line-
numbers are used in Standard Extended Basic, i.e. GOTO, GOSUB, RESTORE etc.

Labels are defined by a name, followed by a colon in the first column of your 
program. Please make sure not to use any reserved words or use a label more than
once.

The label is referenced without the colon.

Example:

GOSUB Initialize

END

Initialize:

  <code>

RETURN

Labels may be used in ON GOTO and ON GOSUB, but require a blank between the 
comma and the label name, i.e. 'ON A GOSUB LB01, LB02, LB03'.

You can always use line numbers as in Extended Basic. If the internal line-
number is lower than the explicit line-number, the internal number will be 
adjusted, otherwise the internal number will be used. This makes sure that line-
numbers are in ascending order, but may break existing GOTO/GOSUB/etc. 
statements using the explicit number.

It is generally depreciated to use line-numbers. For a better readability of the
generated Extended Basic source it is suggested to use scattered line-numbers 
for blocks of code to be found again easily. Do so by only entering a line-
number on a line of its own or in front of a statement. This will offset the 
line-number, but keep the increment, i.e. GOSUB routines start at line 10000, 
DATA statements at 20000 and SUB routines at 30000.

The CASE-Statement
Extended Basic has ON x GOTO and ON x GOSUB statements to jump to different 
lines, but the value of x needs to be 1..n for n destination-lines.

With SXB you may now use a CASE statement for numeric and string variables with 
arbitrary values. Multiple values may be separated by comma.

CASE x OF

  10 : <STMT1>

  20 : <STMT2>

  30,40,50 : <STMT3>

  ELSE <STMT4>

ENDCASE

The statements may be a group of statements, separated by ::, but must fit on a 
line. For larger branches you may use BEGIN-END block, see next chapter. There 
is a CASE.SXB file in the examples. The ELSE branch is optional. Technically, 
the CASE will be translated to an ON x GOSUB with a complex boolean calculation 
of x. For this reason CASE statements can not be used in SUB-Routines and may 
not be nested. Both calculation and line-number list must fit one XB line, 

TiCodEd & Structured Extended Basic Page 10



limiting the number of branches. Be sure to use the ELSE option when you can not
guarantee that the value is in your list, otherwise a Bad Value  error will “ ”
occur.

Implicit and explicit Code-Blocks
Extended Basic has neither BEGIN/END like Pascal nor { } like C to build blocks 
of statements. But you may group some few statements in an IF-THEN-ELSE clause 
by using :: for multiple statements in one line, i.e.:

IF A<0 THEN <STMT1> :: <STMT2> else <STMT3> :: <STMT4>

This technique is limited by the allowed length of the line in Extended Basic. 

It can be used in Structured Extended Basic as well and is the reason that in 
contrast to other programming languages the line has a meaning and may not be 
split without changing semantics. Each line with executable code in Structured 
Extended Basic will be one line in the resulting Standard Extended Basic code.

Additionally SXB now offers BEGIN-END blocks. It does so by fitting the block in
a generated subroutine and use a GOSUB to call it. BEGIN-END blocks may be user 
in IF-THEN-ELSE and in CASE Statements. See the examples Begin.sxb  and “ ”
Case.SXB . BEGIN-END blocks may be nested.“ ”
IF A<0 THEN BEGIN

  <STMT1> 

  <STMT2> 

END ELSE BEGIN

  <STMT3> 

  <STMT4>

END

As they generate GOSUBs the BEGIN-END blocks can not be used in SUB-Routines.

Variables
Variables are stored as unquoted text, therefore the longer the names are, the 
more memory they need. As memory is valuable on the TI, often short variable 
names are used, which are hard to read and to remember. The Variable tab shows 
you all variables from the last build-process and the XB lines where they are 
used as a cross-reference. You are able to assign short-names to variables. They
will replace the names in the SXB and XB page when exported in tokenized format,
saving the memory in the TI. Checks for duplicates and string/number-mismatches 
are performed when entering the optional short-names. 

IN Set Condition
When you want to test if a variable is in a group of values you can now use the 
IN function: 

IF K IN[69,83,68,88] THEN <STMT1> 

This will be translated to IF K=69 OR K=83 OR K=68 OR K=88 THEN <STMT1>. Strings
can be used as well and K NOT IN[ ]  is supported. Please note that there must “ … ”
be exactly one space between NOT and IN.

TiCodEd & Structured Extended Basic Page 11



The BIN$ Function

You can use the pseudo-function BIN$( HEX-STRING ) to “ ”
include binary data in a string, for example to use it 
with CALL VWRITE. The function needs a static string in 
quotes as it is executed when tokenizing the code and not 
at runtime.

Line Continuation 
One SXB line is usually one XB line. The following exceptions are implemented:

• Lines ending with THEN

• Lines ending with ELSE

• Lines ending with ..

will get the following line merged.

Editor Features
There is a code-completion implemented for all keywords and standard routines.
Press Ctrl-Space to get a list and select the word. Code completion works for 
statements, subroutines (standard, local and libraries), labels and variables 
with at least three characters. Dynamic attributes are based on the last 
build.

Lazarus offers the SynEdit component, which is used on the first page of 
TiCodEd. Beside the syntax-highlighting it offers some useful shortcuts beside 
the usual navigation:

Undo Alt Backspace

Redo Shift Alt Backspace

Block Indent Shift Control I

Block Unindent Shift Control U

Column Select Shift Control C

Line Select Shift Control L

Normal Select Shift Control N

Automation and Integration
TiCodED can be configured to send key-stroke messages to an emulator, especially
to Classic99. This can be used to load, run or compile the program automatically
in the emulator. In the Preferences in the menu Edit you find:

TiCodEd & Structured Extended Basic Page 12



Select Classic99 and the Device you use in the emulator for loading the FIAD 
programs you create with TiCodEd. The Delay in milliseconds is the delay between
keys sent to the emulator, the typing speed. 20 should work in most 
environments. Other programs might be identified by Windows Class Name or by 
exact window title, but keyboard input may not work in other programs.

If anything but None  is selected, “ ” an additional section appears on the project
tab:

If the edit field are empty they can be populated with a default by double-
clicking in the edit box. There is a fine, but important difference between 
sending characters or emulating keyboard entries. There is for example no key 
for the quote-character. For typing a quote you have to press the Shift-Key, 
press the key in the middle between Return and L (Labeled differently in each 
country setting), and release the Shift-Key. This can be constructed as:

 :S+:OEM7.:S-

:S+ is pressing Shift, OEM7 is the internal Microsoft name of the mentioned key 
and :S- releases Shift. The defaults should work for you and in Appendix E  –
Keyboard Emulation - you will find a list of keys to send.

When a build is successful, which means without errors, three buttons appear 
below the log. You can press Load, Run or Compile or hit the keys L,R or C to 
send the specified key-sequence to the emulator.

By selecting one of the three Auto check-boxes on the preference tab you can 
even automate this for each successful build process.

Please note that the compile process will start the Extended BASIC compiler 
(assumed to be on DSK1) for the external Assembler and not using the low memory 
for the runtime. This can be changed when needed. The Assembler and the Loader 
need to be executed manually.

TiCodEd & Structured Extended Basic Page 13



Porting existing XB code to SXB
There is no general approach, but the following worked quite good for me:

An Extended Basic program with line numbers should be usable as SXB program to 
start with, as line numbers are depreciated but allowed.

Go through the code and look for any reference to a line-number. Replace the 
line-number with a label and add this label right in front of the target line. 
Once finished you may remove all your line-numbers and start formatting the 
code. This process is now automated with the File/Import function. Each 
referenced Destination-Line gets a Label LABELnnnnn with nnnnn as the line-
number and a renaming-function to replace them with meaningful names.

Add blank lines to separate logical blocks of code. Use line-numbers to group 
your code. Add // comments to make the code easier to understand. Refactor 
blocks by using REPEAT and WHILE loops instead of IF/GOTO. 

Pretty soon your code looks completely different. Export the code to XB and 
compare to the original code.

Extended Basic Version
TiCodEd is tested against the most popular XB 'Solid State Software' module 
Version 110. MyArc Extended Basic contains additional tokens not supported. If 
an XB Version uses the same tokens as XB 110 it should run. Limited testing has 
been done on RXB 2015E, RXB 2020, RXB 2021, Extended Basic v2.7 and G.E.M 2.8 
included in Classic99.

If you are unsure which cartridge you own you may try

CALL VERSION(A)
PRINT A

This will print 110 for the most common module. If you use CALL Subroutines 
unknown to this version you may get warnings as the sub-routines are neither 
known to TiCodEd nor included in a Library file. For XB 2.7 and RXB 2020 are 
packages included to declare these additional subroutines as internal.

Extended BASIC Compiler Considerations (ISABELLA/JEWEL)
TiCodEd is designed to ease the development of compiled programs. Most obvious, 
it supports the export of the needed MERGE-File. But it also checks the names of
your SUB-ROUTINES. There are strict rules listed in the XB Compiler manual you 
may forget while coding. TiCodEd will give warnings, when you use

• Too similar user-routine names (only 6 significant chars)

• compiler reserved words (long list in the manual)

• Letters NC, NV, NA, SC, SV, SA, L followed by a numbers 

Limitation
There are some design limitations you should be aware of, but usually should not
limit your options:

TiCodEd & Structured Extended Basic Page 14



• Nesting level of REPEAT/WHILE has combined a maximum of 32

• Not more than 999 REPEAT/WHILE loops may be used in one program

• Labels may have up to 32 characters and must not be named BLOCKnnn, 
REPEATnnn, WHILEnnn and ENDWHILEnnn (nnn a number) as they are used 
internally.

• You may use up to 200 labels (including generated labels, was 100)

• SXB Programs may have up 2048 lines, including imported SUB-ROUTINES 

• A line may have up to 128 token (remember, special characters like plus or
parenthesis are also tokens). A Line too long  error will be shown when “ ”
the limit is exceeded 

• REPEAT, UNTIL, WHILE, ENDWHILE and WEND need to be the only statements on 
a code-line

• CASE and BEGIN-END can not be used in SUB/SUBEND routines

• Tokenized files over 11775 bytes will be written in 'long format'

• The status-bar contains only information on the SXB tab and the last 
build-process (Errors, Warnings and memory usage).

• TIFILES header will be only partially filled

• SXB files will be automatically saved before conversion to XB

• A VXR file with the variable cross-reference is needed for variable short 
names and will be created with every Build Project“ ”

• Syntax errors may not be detected as both conversions (to XB and to 
Tokens) are based on substitution of strings, not a syntax-graph

• DATA statements may have strings with quotation. Please be aware of the 
removal of spaces at the beginning and end

This section is likely to be extended when people send me errors I can not 
easily fix.

Trouble-Shooting
Something not working? Take a look at the log page. If you set the log-level to 
5 = 'unbelievable verbose' you get log information about seven times the size of
your source when running 'Export / Build Project'. 

First, check if the code is correctly translated from SXB to XB. The log gives 
you indication of all substitutions. 

The second step is more tricky, as it involves the binary token format. The log 
file also lists each line in token format. First the XB line is shown, then 
after the -> arrow how it is split up separated by pipe symbols | and finally 
the hex presentation. For bytes larger 0x80 the corresponding token is listed in
square brackets for easier interpretation, disregarding whether or not it is 
actually a token (i.e. part of a line number).

120 FOR I=0 TO 14 :: CALL COLOR(I,16,2) :: NEXT I :: CALL 

COLOR(9,10,16) -> FOR|I|=|0|TO|14|::|CALL|COLOR|(|I|,|16|,|2|)|::|
NEXT|I|::|CALL|COLOR|(|9|,|10|,|16|)| -> 8C[FOR] 49 BE[=] 

TiCodEd & Structured Extended Basic Page 15

https://www.ninerpedia.org/wiki/BASIC_tokens


C8[Unquotedstring] 01 30 B1[TO] C8[Unquotedstring] 02 31 34 82[::] 
9D[CALL] C8[Unquotedstring] 05 43 4F 4C 4F 52 B7[(] 49 B3[,] 
C8[Unquotedstring] 02 31 36 B3[,] C8[Unquotedstring] 01 32 B6[)] 
82[::] 96[NEXT] 49 82[::] 9D[CALL] C8[Unquotedstring] 05 43 4F 4C 4F
52 B7[(] C8[Unquotedstring] 01 39 B3[,] C8[Unquotedstring] 02 31 30 
B3[,] C8[Unquotedstring] 02 31 36 B6[)] (?I???0???14????COLOR?I???

16???2???I????COLOR???9???10???16?) 

If the tokenized file does not load try pasting the XB source code to the 
emulator, save it and compare the files. Or try loading the MERGE file instead.

Found an Error? Having a suggestion? Future plans?
I am happy to hear from you, whether TiCodEd works for you or you found a 
problem. I won't debug your code though. When you have an example of something 
going wrong, chances increased when your code has less than 15 line or you can 
point to an exact line where an error occurs and what is actually right.

I set up an email address I check when I have time for my TI hobby:

TiCodEd <at> lizardware <dot> de

Please accept my apologies that it may take some time for me to respond. Rainy 
autumn weekends may be better than sunny spring workdays.

I already have some features in my mind for future releases. 

TiCodEd & Structured Extended Basic Page 16



Building TiCodEd from Source
TiCodEd is written in PASCAL using the free Lazarus IDE and libraries.

https://www.lazarus-ide.org/

This IDE offers cross-platform support for Linux and Mac. Ports to those 
platforms may not be too complicated. Currently only Win32 and Win64 are 
supported and available for download. I work with and test the Win64 bit 
version.

Use LibXBTKN32.dll or LibXBTKN64.dll
I wrote a wrapper for the uTokenize.pas unit to be used in other programs. It is
used to convert Extended Basic Text-Files to tokenized XB and publishes the 
following function:

Function XBTokenize(xbin,tknout,mrgout,logfn,opt:PChar):Integer; cdecl;

Parameter Description

xbin Input Text filename with Standard Extended Basic Program

tknout Output filename with TIFILES Header, empty to omit

mrgout Output filename with TIFILES Header in MERGE format, empty to 
omit

logfn Logfile name, empty to omit

opt Options: v=[0..5] Verbosity, default 3
         -IV254 forced IV254 format also for small programs

Return-Code 00 : No Errors
10 : Could not open XB input file
11 : Error reading XB input file
20 : Error converting file
30 : Error writing MERGE file
40 : Error writing PROGRAM file
50 : Could not open log file

TiCodEd & Structured Extended Basic Page 17

https://www.lazarus-ide.org/


BSD License  
Copyright (c) 2022, Stefan Bauch

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

   list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

   this list of conditions and the following disclaimer in the documentation

   and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Acknowledgements
Some people helped me, for pandemic and geographical reasons mostly by mail.

• Matthew Hagerty with hints on porting his TIdBiT to Pascal

• Ralph Benzinger for hints on tokenizing and the 'long format'

• Harry Wilhelm for writing the XB Compiler, which encouraged me to resume 
coding for the TI-99/4a

• Fred Kaal for Ti99Dir and testing of TiCodEd and the Tokenizer 
LibXBTKN32.DLL and including it in Ti99Dir 

• Helge Spahrbier for testing of TiCodEd and the Mac version

• AirShack, Oddemann, dhe and Vorticon for their input on AtariAge

In memory of Frank Euler, my late TI programming companion. I miss you.

TiCodEd & Structured Extended Basic Page 18



Appendix A  Change-Log–

Version 2.20 

• New function BIN$ to include binary data provided as Hex-String

• New RXB 2022 and XB 2.8 Package file 

• Bugfix: Generated GOSUB Line-Numbers correct when no SUB is used

• Bugfix: Single-Word Statement followed by :: not misread as labels

Version 2.10 

• New option for forced IV254 on project page

• Edit Menu: New Toggle Comment feature

• New RXB 2021 and TML 2.0 Library files; bug fix XB256 WINDOW“ ”

• 200 instead of max. 100 labels due to many generated labels

• Semicolon can now be used in filenames in the integration

• ON GOTO / GOSUB does not require a space before each label anymore

Version 2.00 

• New BEGIN-END Blocks in IF-THEN-ELSE and CASE

• New CASE-Statement 

• IN[..] Set testing

• Import for XB programs supporting assignment of labels

• Syntax Highlighter adapted for XB / SXB (from Visual Basic)

• Changed Char Editor to complete Charset Editor incl. animations

• Find/Replace reworked to avoid accidental deletions

• Scroll-Bar on Parameter and Char Tab for smaller screens

• Parameters for generated GOSUB and SUB/SUBEND line numbers

• Error-Messages for Non-ASCII Characters and undefined Labels

• Finally a meaningful status-bar for the SXB editor and last build

• Code-Completion with Ctrl-Space and new Edit/Highlight function

• Remote Control of Classic99 and other emulators by Keyboard Emulation

TiCodEd & Structured Extended Basic Page 19



Version 1.20 

• New Variable Page

◦ Cross-Reference with option for XB short names to save memory

• Char Page

◦ Switching 8x8/16x16 now changes the hex-string

◦ Erase Button added

• Project Page has now a Post-Processing Command-String

• Window size and position will be restored on next execution

• Auto-Scaling disabled to fix display errors 

• Several minor bug fixes and usability enhancements

Version 1.10 

• Libraries in Project page

◦ Extension Packages (XB256, T40XB,...)

◦ User Library

◦ Standard Library

• Help-Menu added

• Preferences dialog added

◦ Change font size for editor

• WHILE-ENDWHILE logic optimized

• Program statistics in log file for log level 'Information' and higher

• More SXB Examples provided

Version 1.00

• Initial release

TiCodEd & Structured Extended Basic Page 20



Appendix B  Standard Subroutine Library–
Still under development. Suggestions and code donations welcome!

All routines are XB Compiler compatible (except where noted).

CALL ScrInit(fg,bg) Clears the screen, deletes all sprites, sets a background 
color bg and all chars in foreground color fg with a transparent 
background.

CALL RAND(SEED,UL,RES) Returns an integer 0 <= RES < UL and advances the seed. 
Useful when you want a repeatable sequence, but be aware that neighbor 
seeds will compute similar results, while the seed is updated with distinct
values. 

CALL CreateQ(A$,L) Initializes a Queue with the length of L (max 84) and stores 
it in the string a$. Each queue entry consists of three byte, the last byte
of the string is the current entry.

CALL enQ(a$,c,p1,p2,d) Adds a record to the first free entry of the queue d 
steps ahead of the current position (use 1 for the next available) with the
command c and the parameters p1 and p2 (values 1-255 for command, 0-255 for
parameters). If the queue is full a$ is set to 'full' and appropriate 
actions should be taken.

CALL deQ(a$,c,p1,p2) Gets next entry from the queue, command 0 means empty slot.

CALL trim(a$) Removes leading and trailing spaces and unprintable characters. 

CALL upStr(a$) Converts a$ to uppercase characters. 

CALL loStr(a$) Converts a$ to lowercase characters. 

CALL Mod(n,d,m) Calculates the modulo n MOD d (Remainder n/d). Results may 
differ when compiled if n or d are no integer values.

TiCodEd & Structured Extended Basic Page 21



Appendix C  Extension Packages–
Extension Packages are translation tables for popular extensions in a very easy 
and simple format. Whenever a subroutine has parameters they are universally 
referred to as 'P'. All parameters are passed as-is to the LINK call. When a 
subroutine has optional parameters it is required to have two translation lines 
in the XBP Package file, first the line with parameters, followed by the line 
without parameters, i.e. SCRLUP in XB256. 

CALL SCRLUP(P) -> CALL LINK("SCRLUP",P)
CALL SCRLUP -> CALL LINK("SCRLUP")

Each line starts with the SXB simplified code, followed by ' -> ' and the 
resulting LINK call. Please take care of possible name conflicts, i.e. CALL 
LINK("SCREEN",P) must not be referenced as CALL SCREEN, as this is already taken
by XB. 

Immediate calls are not defined as they must not be used in programs.

For additional routines in newer basic variants the INTERNAL command can declare
internal subroutines which are neither searched in libraries nor raising errors.
The extension package may also contain specific subroutines to the package. 
These are read after the user- and before the standard-library file.

You may combine files to create a combined package, i.e. RXB with XB256.

XB256

All routines of XB256 have been translated to identical CALL routines except 
for:

• CALL LINK("SCREEN",P) is to be used as CALL SCREEN2(P) in SXB

• CALL LOAD(-1,N) may be used as CALL SYNC(N) to set the interval

See file LIB/XB256 for syntax and the very good XB256 documentation for 
semantics and usage of XB256.

Additional Routine:

• SUB SPEED(S,X,Y)  Returns the speed of Sprite S.–

T40XB

All routines of T40XB have been translated to identical CALL routines except 
for:

• CALL LINK("COLOR",P) is to be used as CALL COLOR2(P) in SXB

• CALL LINK("CHAR",P) is to be used as CALL CHAR2(P) in SXB

• CALL LINK("HCHAR",P) is to be used as CALL HCHAR2(P) in SXB

• CALL LINK("VCHAR",P) is to be used as CALL VCHAR2(P) in SXB

See file LIB/T40XB for syntax and the very good T40XB documentation for 
semantics and usage of T40XB.

TiCodEd & Structured Extended Basic Page 22



TML  The missing link–
All routines of TML 2.0 have been translated to identical CALL routines except 
for:

• CALL LINK("COLOR",P) is to be used as CALL COLOR2(P) in SXB

• CALL LINK("CHAR",P) is to be used as CALL CHAR2(P) in SXB

• CALL LINK("CLEAR",P) is to be used as CALL CLEAR2 in SXB

RXB 2022

Rich Extended Basic (RXB) contains numerous new CALL subroutines. This 
packages declares them as internal routines on top of the standard routines.

Extended Basic 2.7

Extended Basic 2.7 contains numerous new CALL subroutines. This packages 
declares them as internal routines on top of the standard routines.

TiCodEd & Structured Extended Basic Page 23



Appendix D  Example files –
In the directory .\Examples you will find some demonstrations of SXB you may use
for exploring the possibilities of the TiCodEd environment.

COINC

A very basic program for testing the CALL COINC subroutine for a game. No line-
numbers and just a REPEAT loop for starting and make yourself comfortable with 
the environment and the different pages. Paste the character-definition to the 
Char page, modify it and paste it back. 

WHILE

Demonstrates the use of nested WHILE loops. Take a look at the generated code on
the XB page. The WHILE becomes a GOTO, the condition is moved to the end of the 
loop. This example uses ENDWHILE and WEND to end the loop as they are synonyms.

XB256

This program demonstrates to use of the package 'XB256'. Make sure that on the 
project page LIB\XB256.xbpkg is selected and you load it first when you execute 
the program. This package defines the translation of the simple CALLs to the 
CALL LINK statements. Have a look at the source and open LIB\XB256.xbpkg in a 
text-editor if you are curious.

The screen is prepared with CALL scrn2, screen2, color2 and disply. Check the XB
page how they are translated to CALL LINK. Please note that the text 'XB256' is 
not moved, but the whole screen is scrolled in all four directions just to show 
how mighty the XB256 package is and how easy it can be used.

QUEUE

This program demonstrates the use of the TiCodEd Standard Library. Make sure 
that the box 'Standard Library' is checked on the Project page. First it uses 
CALL ScrInit out of the library to clear the screen, set a black background and 
white characters. Note the scattered line-numbers to build logical blocks in the
program, the main program starts at 1000, the GOSUB routines at 20000 and the 
trailing 30000 sets the base line-number for the subroutines out of the Standard
Library. 

The program asks first for the length (capacity) of the queue, which may be up 
to 84 entries, and the delay, meaning how far from the current position a new 
entry will be inserted. 

When you press letters A to Z, they will be shown in one of three rows and the 
position will be added in the queue (p1,p2). After d iterations the letter will 
be deleted. The command 1 stands for 'delete char', others may be added and ON c
GOTO / ON c GOSUB could be called. 

On the XB page you can study how the code from the library is appended. A 
compiled version of this program is included.

SPRITE256

Demonstrates the usage of package-specific SUB-Routines with the XB256 package.
XB256 provides VREAD to read the sprite control table, used in a new SUB-routine
to read the speed of a sprite.

TiCodEd & Structured Extended Basic Page 24



MODULO

The usage of CALL MOD(n,d,m) to calculate the n MOD d.

STEVEB52

A little game demo. Press Space to drop a bomb. Clear the runway before you
land.

STRINGS

String utility functions CALL LoStr, CALL HiStr and CALL Trim from the standard
library.

BINSTR

Demonstrate the BIN$ function to create a binary string and use it in XB256 
CALL VWRITE to create a fast CALL CHAR.

CASE

Demonstrates the CASE statement including the option to use BEGIN-END blocks 
with CASE and the ELSE branch. 

BEGIN

Nested BEGIN-END blocks and a simple CASE. 

IMPORT.XB

A test- and training XB program for the import module (File/import) using all 
available XB statements with line-numbers. 

TMLSXB

A very basic demo for TML with SXB. Be sure to select the TML package on the 
project page.

SUBTEST

The ISABELLA compiler is very picky about names of sub-routines. Only the first 
6 characters are significant and there are plenty of reserved words (check 
Isabella documentation for details). 

TiCodEd has a check implemented and gives warnings:

1. Too similar user-routine names 

2. Use of reserved words

3. Letters NC, NV, NA, SC, SV, SA, L followed by a numbers 

While the program itself is without any use it provides examples of the 
implemented checks.

Warning: VREAD is a reserved word in ISABELLA.
Warning: !NV1000 and !NV1000X too similar for ISABELLA (only 6 significant chars)
Warning: !CHARSET2 is too similar to standard routine for ISABELLA (only 6 significant chars)
Warning: L1000 is invalid in ISABELLA.
Warning: NV1000 is invalid in ISABELLA.
Warning: Subroutine NONEXISTANT not declared.

The preceding '!' indicates the matching presence of a SUB command, otherwise a 
warning will be issued.

TiCodEd & Structured Extended Basic Page 25



Appendix E  – Keyboard Emulation
Please visit the Microsoft page for virtual key codes. Many of these keys can be
used in the TiCodEd Keyboard Emulation.

• Standard Characters A-Z and 0-9

• :RET. Return Key

• :TAB. Tabulator

• :ESC. Escape

• :F1. to :F24. Function Keys (i.e. :F3. for erase )“ ”

• + - , .

• :S+  :S-  Shift on / Shift off

• :C+  :C-  Control on / Control off

• :A+  :A-  Alt on / Alt off

• :OEM1. to :OEM8., :OEM102. See Microsoft virtual key codes for details

A special command is :WAITx. waits for x seconds before continuing (1-9 sec.).

You may use up to ten lines. Note that for each line in the script:

• The focus is set to the specified program (Classic99)

• Before the first character 20 times the delay-rate will be waited

Increase the Delay in the Preferences if characters are missing.

Class Names for emulators are

• Classic99: TIWndClass

• Ti994w : Ti994w

• Win994a: n/a (use Window Title Win994a Simulator - v3.010 (x64) )‘ ’

TiCodEd & Structured Extended Basic Page 26

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes
https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

	What is TiCodEd ?
	What is Structured Extended Basic?
	Installing TiCodEd
	TiCodEd Projects
	Writing SXB Code
	Exporting SXB Code
	The Charset Editor
	Structured Extended Basic
	Using REPEAT .. UNTIL
	Using WHILE .. ENDWHILE
	Using Labels and Line-Numbers
	The CASE-Statement
	Implicit and explicit Code-Blocks
	Variables
	IN Set Condition
	The BIN$ Function
	Line Continuation
	Editor Features
	Automation and Integration
	Porting existing XB code to SXB
	Extended Basic Version
	Extended BASIC Compiler Considerations (ISABELLA/JEWEL)
	Limitation
	Trouble-Shooting
	Found an Error? Having a suggestion? Future plans?
	Building TiCodEd from Source
	Use LibXBTKN32.dll or LibXBTKN64.dll
	BSD License
	Acknowledgements
	Appendix A – Change-Log
	Version 2.20
	Version 2.10
	Version 2.00
	Version 1.20
	Version 1.10
	Version 1.00

	Appendix B – Standard Subroutine Library
	Appendix C – Extension Packages
	XB256
	T40XB
	TML – The missing link
	RXB 2022
	Extended Basic 2.7

	Appendix D – Example files
	Appendix E – Keyboard Emulation

